IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Different topography of the reticulothalmic inputs to first- and higher-order somatosensory thalamic relays revealed using photostimulation.

The thalamic reticular nucleus is a layer of GABAergic neurons that occupy a strategic position between the thalamus and cortex. Here we used laser scanning photostimulation to compare in young mice (9-12 days old) the organization of the reticular inputs to first- and higher-order somatosensory relays, namely, the ventral posterior lateral nucleus and posterior nucleus, respectively. The reticulothalamic input footprints to the ventral posterior lateral nucleus neurons consisted of small, single, topographically organized elliptical regions in a tier away from the reticulothalamic border. In contrast, those to the posterior nucleus were complicated and varied considerably among neurons: although almost all contained a single elliptical region near the reticulothalamic border, in most cases, they consisted of additional discontinuous regions or relatively diffuse regions throughout the thickness of the thalamic reticular nucleus. Our results suggest two sources of reticular inputs to the posterior nucleus neurons: one that is relatively topographic from regions near the reticulothalamic border and one that is relatively diffuse and convergent from most or all of the thickness of the thalamic reticular nucleus. We propose that the more topographic reticular input is the basis of local inhibition seen in posterior nucleus neurons and that the more diffuse and convergent input may represent circuitry through which the ventral posterior lateral and posterior nuclei interact.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app