Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner.

Circulation 2007 October 3
BACKGROUND: Oxidative stress plays a causal role in vascular injury in diabetes mellitus, but the mechanisms and targets remain poorly understood.

METHODS AND RESULTS: Exposure of cultured human umbilical vein endothelial cells to either peroxynitrite (ONOO-) or high glucose significantly inhibited both basal and insulin-stimulated Akt phosphorylation at Ser473 and Akt activity in parallel with increased apoptosis, phosphorylation, and activity of phosphatase and tensin homologue deleted on chromosome 10 (PTEN). Furthermore, protein kinase B/Akt inhibition induced by ONOO- or high glucose and apoptosis triggered by high glucose could be abolished by transfection of PTEN-specific small interfering RNA, suggesting that PTEN mediated the Akt inhibition by ONOO-. In addition, exposure of human umbilical vein endothelial cells to ONOO- or high glucose remarkably increased Ser428 phosphorylation of LKB1, a tumor suppressor. Interestingly, the ONOO(-)-enhanced PTEN phosphorylation and Akt inhibition can be blocked by LKB1-specific small interfering RNA. Consistently, LKB1 phosphorylated PTEN at Ser380/Thr382/383 in vitro, suggesting that LKB1 might act as an upstream kinase for PTEN. Compared with nondiabetic mice, the levels of PTEN, LKB1-Ser428 phosphorylation, and 3-nitrotyrosine (a biomarker of ONOO-) were significantly increased in the aortas of streptozotocin-induced diabetic mice, which was in parallel with a reduction in Akt-Ser473 phosphorylation and an increase in apoptosis. Furthermore, administration of PTEN-specific small interfering RNA suppressed diabetes-enhanced apoptosis and Akt inhibition. Finally, treatment with Tempol, a superoxide dismutase mimetic, and insulin, both of which reduced the ONOO- formation, markedly reduced diabetes-enhanced LKB1-Ser428 phosphorylation, PTEN, and apoptosis in the endothelium of mouse aortas.

CONCLUSION: We conclude that hyperglycemia triggers apoptosis by inhibiting Akt signaling via ONOO(-)-mediated LKB1-dependent PTEN activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app