Control of multi-resistant bacteria and ventilator-associated pneumonia: is it possible with changes in antibiotics?

Elisa M Jukemura, Marcelo N Burattini, Carlos A P Pereira, Alfésio L F Braga, Eduardo A S Medeiros
Brazilian Journal of Infectious Diseases 2007, 11 (4): 418-22
Potent antimicrobial agents have been developed as a response to the development of antibiotic-resistant bacteria, which especially affect patients with prolonged hospitalization in Intensive Care Units (ICU) and who had been previously treated with antimicrobials, especially third-generation cephalosporins. This study was to determine how changes in the empirical treatment of infections in ICU patients affect the incidence of Gram-negative bacteria species and their susceptibility to antimicrobials, and examine the impact of these changes on nosocomial infections. A prospective interventional study was performed in a university hospital during two periods: 1) First period (September 1999 to February 2000); and 2) Second period (August 2000 to December 2000); empirical treatment was changed from ceftriaxone and/or ceftazidime in the first period to piperacillin/tazobactam in the second. ICU epidemiological and infection control rates, as well as bacterial isolates from upper airways were analyzed. Ceftazidime consumption dropped from 34.83 to 0.85 DDD/1000 patients per day (p=0.004). Piperacillin/tazobactam was originally not available; its consumption reached 157.07 DDD/1000 patients per day in the second period (p=0.0002). Eighty-seven patients and 66 patients were evaluated for upper airway colonization in the first and second periods, respectively. There was a significant decrease in the incidence of K. pneumoniae (p=0.004) and P. mirabilis (p=0.036), restoration of K. pneumoniae susceptibility to cephalosporins (p<0.0001) and reduction of ventilator-associated pneumonia rates (p<0.0001). However, there was an increase in P. aeruginosa incidence (p=0.005) and increases in ceftazidime (p=0.003) and meropenem (p<0.0001) susceptibilities. Changing antimicrobial selective pressure on multi-resistant Gram-negative bacteria helps control ventilator-associated pneumonia and decreases antimicrobial resistance.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"