Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functional expression of M3, a muscarinic acetylcholine receptor subtype, in taste bud cells of mouse fungiform papillae.

Chemical Senses 2008 January
Taste bud cells (TBCs) express various neurotransmitter receptors assumed to facilitate or modify taste information processing within taste buds. We investigated the functional expression of muscarinic acetylcholine receptor (mAChR) subtypes, M1-M5, in mouse fungiform TBCs. ACh applied to the basolateral membrane of TBCs elevates the intracellular Ca(2+) level in a concentration-dependent manner with the 50% effective concentration (EC(50)) of 0.6 microM. The Ca(2+) responses occur in the absence of extracellular Ca(2+) and are inhibited by atropine, a selective antagonist against mAChRs. The order of 50% inhibitory concentration (IC(50)) examined with a series of antagonists selective to mAChR subtypes shows the expression of M3 on TBCs. Perforated whole-cell voltage clamp studies show that 1 microM ACh blocks an outwardly rectifying current and that 100 nM atropine reverses the block. Reverse transcriptase-mediated polymerase chain reaction studies suggest the expression of M3 but not the other mAChR subtypes. Immunohistochemical studies show that phospholipase Cbeta-immunoreactive TBCs and synaptosome-associated protein of 25 kDa-immunoreactive nerve endings are immunoreactive to a transporter that packs ACh molecules into synaptic vesicles (vesicular acetylcholine transporter). These results show that M3 occurs on a few fungiform TBCs and suggest that a few nerve endings, and probably a few TBCs, release ACh by exocytosis. The role of ACh in taste responses is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app