Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation.

Stem Cells 2007 December
Cardiomyocytes (CMs) are nonregenerative. Self-renewable pluripotent human embryonic stem cells (hESCs) can differentiate into CMs for cell-based therapies. In adult CMs, Ca(2+)-induced Ca(2+) release from the sarcoplasmic reticulum (SR) via the ryanodine receptor (RyR) is key in excitation-contraction coupling. Therefore, proper Ca(2+) handling properties of hESC-derived CMs are required for their successful functional integration with the recipient heart. Here, we performed a comprehensive analysis of CMs differentiated from the H1 (H1-CMs) and HES2 (HES2-CMs) hESC lines and human fetal (F) and adult (A) left ventricular (LV) CMs. Upon electrical stimulation, all of H1-, HES2-, and FLV-CMs generated similar Ca(2+) transients. Caffeine induced Ca(2+) release in 65% of FLV-CMs and approximately 38% of H1- and HES2-CMs. Ryanodine significantly reduced the electrically evoked Ca(2+) transient amplitudes of caffeine-responsive but not -insensitive HES2- and H1-CMs and slowed their upstroke; thapsigargin, which inhibits the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump, reduced the amplitude of only caffeine-responsive HES2- and H1-CMs and slowed the decay. SERCA2a expression was highest in ALV-CMs but comparable among H1-, HES2-, and FLV-CMs. The Na(+)-Ca(2+) exchanger was substantially expressed in both HES2- and H1-CMs relative to FLV- and ALV-CMs. RyR was expressed in HES2-, H1-, and FLV-CMs, but the organized pattern for ALV-CMs was not observed. The regulatory proteins junctin, triadin, and calsequestrin were expressed in ALV-CMs but not HES2- and H1-CMs. We conclude that functional SRs are indeed expressed in hESC-CMs, albeit immaturely. Our results may lead to driven maturation of Ca(2+) handling properties of hESC-CMs for enhanced contractile functions. Disclosure of potential conflicts of interest is found at the end of this article.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app