JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography.

Optical coherence tomography (OCT) based on spectral interferometry has recently been examined, with authors often suggesting superior performance compared with time domain approaches. The technologies have similar resolutions and the spectral techniques may currently claim faster acquisition rates. Contrary to many current opinions, their detection parameters may be inferior. The dynamic range and signal-to-noise ratio (SNR) correlate with image penetration, the contrast as a function of depth. This work examines the theoretical sensitivity, dynamic range, and SNR of the techniques, within the practical limits of optoelectronics, taking into account often ignored or misunderstood classical factors that affect performance, such as low frequency noise, analog to digital (AD) conversion losses, and methods for potentially improving sensitivity, including fast laser sweeping. The technologies are compared relative to these parameters. While Fourier domain OCT has some advantages such as signal integration, it appears unlikely that its disadvantages can ultimately be overcome for nontransparent tissue. Ultimately, time-domain (TD)-OCT appears to have the superior performance with respect to SNR and dynamic range. This may not be the case for transparent tissue of the eye. Certain positive aspects of swept source OCT leave the possibility open that its performance may approach that of (TD)-OCT in nontransparent tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app