Evaluation Studies
Letter
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Three-dimensional nonlinear optical endoscopy.

The development of miniaturized nonlinear optical microscopy or endoscopy is essential to complement the current imaging modalities for diagnosis and monitoring of cancers. We report on a nonlinear optical endoscope based on a double-clad photonic crystal fiber and a two-dimensional (2-D) microelectromechanical system mirror, enabling the three-dimensional (3-D) nonlinear optical imaging through in vitro gastrointestinal tract tissue and human breast cancer tissue with a penetration depth of approximately 100 mum and axial resolution of 10 mum. The 3-D high-resolution and high-sensitive imaging ability of the nonlinear optical endoscope facilitates the visualization of 3-D morphologic and cell nuclei arrangement within tissue, and therefore will be important for histopathologic interpretation without the need of tissue excision.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app