Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells.

MicroRNAs (miRNAs) are a class of 19- to 23-nt, small, noncoding RNAs, which bind the 3' UTR of target mRNAs to mediate translational repression in animals. miRNAs have been shown to regulate developmental processes, such as self-renewal of stem cells, neuronal differentiation, myogenesis, and cancer. A functional role of miRNAs in the regulation of neurotransmitter synthesis has yet to be ascribed. We used mesenchymal stem cells (MSCs) as a model to study miRNA-mediated neurotransmitter regulation in developing neuronal cells. MSCs are mesoderm-derived cells, primarily resident in adult bone marrow, which can generate functional neuronal cells. We have previously shown that human MSC-derived neuronal cells express the neurotransmitter gene, Tac1, but do not synthesize the gene's encoded peptide, the neurotransmitter substance P (SP), unless stimulated with the inflammatory mediator IL-1alpha. These findings suggested a potential role for miRNAs in the regulation of SP synthesis. Here, we report on the miRNA profile of undifferentiated human MSCs and MSC-derived neuronal cells by using miRNA-specific bioarrays. miRNAs that were increased in the neuronal cells and decreased after IL-1alpha stimulation were analyzed by the miRanda algorithm to predict Tac1 mRNA targets. Putative miR-130a, miR-206, and miR-302a binding sites were predicted within the 3' UTR of Tac1. Target validation using a luciferase reporter system confirmed the miR-130a and miR-206 sites. Specific inhibition of miR-130a and miR-206 in the neuronal cells resulted in SP synthesis and release. The studies provide a different approach in ascribing a new regulatory role for miRNAs in regulating neurotransmitter synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app