JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Diversity of crystal structure with different lanthanide ions involving in situ oxidation-hydrolysis reaction.

A series of lanthanide and lanthanide-transition metal compounds with isonicotinic acid (Hina) and oxalate ligands have been synthesized under hydrothermal reactions. X-Ray crystal structure analyses reveal that they have a rich structural chemistry. Three distinct structure types were exhibited with decreasing lanthanide radii: [LnCu(ina)(2)(C(2)O(4))].H(2)O (Ln=La 1, Pr 2, Nd 3) for type I, [Ln(ina)(C(2)O(4))(H(2)O)(2)] (Ln=Sm 4, Eu 5, Gd 6) for type II, and [Ln(ina)(C(2)O(4))(0.5)(OH)] (Ln=Tb 7, Dy 8, Er 9) for type III. The structure of type I has a 3d-4f heterometallic structure and consists of 1D channels along the b axis, which filled with guest water molecules. They exhibit a first 3D uninodal eight-connected framework with a unique 3(6).4(18).5(3).6 topology. Type II has 2D Ln-ina-C(2)O(4) 4(4)-nets, the nitrogen donors of the ina ligand are not coordinated to any of the metal ions, inducing the lower dimensional networks. Type III consists of 2D Ln-C(2)O(4) layers pillared by ina ligands to form a pillared-layer framework. The structure evolution is due to the versatile coordination modes of ina and oxalate ligands as well as the lanthanide contraction effect. Notably, the oxalate ligand was in situ synthesized from orotic acid through an oxidation-hydrolysis reaction. The type III materials show high thermal stability; luminescence properties of Nd 3, Sm 4, Eu 5, Tb 7 are also investigated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app