JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation.

Plant Physiology 2007 November
The phytochrome (phy) family of sensory photoreceptors (phyA-phyE in Arabidopsis thaliana) induces changes in target-gene expression upon light-induced translocation to the nucleus, where certain members interact with selected members of the constitutively nuclear basic helix-loop-helix transcription factor family, such as PHYTOCHROME-INTERACTING FACTOR3 (PIF3). Previous evidence indicates that the binding of the photoactivated photoreceptor molecule to PIF3 induces rapid phosphorylation of the transcription factor in the cell prior to its degradation via the ubiqitin-proteosome system. To investigate whether this apparent primary signaling mechanism can be generalized to other phy-interacting partners, we have examined the molecular behavior of a second related phy-interacting member of the basic helix-loop-helix family, PIF5, during early deetiolation, immediately following initial exposure of dark-grown seedlings to light. The data show that red light induces very rapid phosphorylation and subsequent degradation (t(1/2) < 5 min) of PIF5 via the proteosome system upon irradiation. Photobiological and genetic evidence indicates that the photoactivated phy molecule acts within 60 s to induce this phosphorylation of PIF5, and that phyA and phyB redundantly dominate this process, with phyD playing an apparently minor role. Collectively, the data support the proposal that the rapid phy-induced phosphorylation of PIF3 and PIF5 may represent the biochemical mechanism of primary signal transfer from photoactivated photoreceptor to binding partner, and that phyA and phyB (and possibly phyD) may signal to multiple, shared partners utilizing this common mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app