JOURNAL ARTICLE

Detailed structure of integrons and transposons carried by large conjugative plasmids responsible for multidrug resistance in diverse genomic types of Salmonella enterica serovar Brandenburg

Noelia Martínez, M Carmen Mendoza, Irene Rodríguez, Sara Soto, Margarita Bances, M Rosario Rodicio
Journal of Antimicrobial Chemotherapy 2007, 60 (6): 1227-34
17827139

OBJECTIVES: To evaluate the incidence, molecular basis and distribution among genomic types of antimicrobial drug resistance in Salmonella enterica (S.) serovar Brandenburg isolates recorded in the Principality of Asturias, Spain.

METHODS: Thirty-seven S. Brandenburg isolates were tested for susceptibility to antimicrobial agents and typed by random amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE). PCR amplifications, together with DNA cloning and sequencing, were used to identify resistance genes, integrons and transposons and to establish the structure and physical associations between them. Conjugation experiments were applied to establish the location of the identified elements.

RESULTS: Twenty-one isolates were resistant to one or more unrelated drugs. Resistances to streptomycin, tetracycline, kanamycin, chloramphenicol, ampicillin and trimethoprim-sulfamethoxazole, encoded by aadA1, tet(A) or tet(B), aphA1, catA1, bla(TEM) and dfrA1-sul1-sul3, respectively, were most frequently observed. Multidrug resistance (32.4%) was mainly mediated by mobile genetic elements. These included: (i) class 1 integrons (with dfrA1-aadA1 gene cassettes in their variable region), which were part of Tn21-related transposons associated with Tn9; (ii) a Tn1721-derivative containing tet(A); (iii) a defective Tn10 that carried tet(B), and was linked to an integron; and (iv) large conjugative plasmids carrying a class 1 integron-Tn21-Tn9-like structure, together with the Tn1721- or the Tn10-related element. Two-way-RAPD and XbaI-PFGE discriminated the isolates into 15 and 12 profiles, respectively.

CONCLUSIONS: Complex genetic elements have apparently been responsible for the recruitment, assembly and dispersion of resistance genes among the highly diverse genomic types of S. Brandenburg, identified as causal agents of human salmonellosis in the Principality of Asturias, over recent years.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17827139
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"