Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Investigation of concentration quenching and 1.3 microm emission in Nd(3+)-doped bismuth glasses.

Nd(2)O(3)-doped 70Bi(2)O(3)-20B(2)O(3)-10SiO(2)-xNd(2)O(3) (x=0.1, 0.3, 0.5, 0.7, 1.0, 1.5 mol%) bismuth glasses were prepared by the conventional melt-quenching method, and the Nd(3+):(4)F(3/2)-->(4)I(13/2) fluorescence properties had been studied for different Nd(3+) concentrations. The Judd-Ofelt analysis for Nd(3+) ions in bismuth boron silicate glasses was also performed on the base of absorption spectrum. The transition probabilities, excited state lifetimes, the fluorescence branching ratios, quantum efficiency and the stimulated emission cross-sections of (4)F(3/2)-->(4)I(13/2) transition were calculated and discussed. Based on the electric dipole-dipole interaction theory, the interaction parameters: C(DD), for the energy migration rate (4)F(3/2), (4)I(9/2)-->(4)F(3/2), (4)I(9/2) and C(DA), for cross-relaxation rate (4)F(3/2), (4)I(9/2)-->(4)I(15/2), (4)I(15/2), and/or (4)F(3/2), (4)I(9/2)-->(4)I(13/2), (4)I(15/2) in bismuth boron silicate glasses were about 18.4 x 10(-40)cm(6)/s and 3.4 x 10(-40)cm(6)/s, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app