Add like
Add dislike
Add to saved papers

Impact milling of pharmaceutical agglomerates in the wet and dry states.

This study focused on the milling of wet granulated agglomerates at points before and after drying in a typical high-shear pharmaceutical process train. These steps, referred to here as wet and dry milling, utilized a conical screen mill. Milling of granulation in the wet state eliminated 1-10mm size agglomerates without affecting granule porosity or inducing further agglomeration. These millimeter-size agglomerates broke down during wet milling into moderately sized fragments larger than 125microm. In contrast, when milled after drying, these same 1-10mm-size agglomerates broke down predominantly into fine particles less than 125microm. Data from screen-less milling trials suggest that the mill screen served only as a classifier and did not significantly contribute to the route of breakage for either wet or dry milling. However, in the case of dry milling, mill screens with grated surface textures did result in fewer fines than non-grated screens. This may be a result of reduced residence time in the mill. Experiments varying the size fraction of feed material and the rotational speed of the mill's impeller identified impact attrition as the primary mechanism governing dry granule breakage. The findings in this study shed light into the fundamental breakdown behavior of pharmaceutical agglomerates and demonstrate how breakdown of wet agglomerates via a de-lumping step prior to drying can lead to a reduced level of fine particle generation during dry milling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app