JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Computational studies of the structure, dynamics and native content of amyloid-like fibrils of ribonuclease A.

Proteins 2008 Februrary 16
The characterization at atomic resolution of amyloid-like protein aggregates is one of the fundamental problems of modern biology. In particular, the question whether native-like domains are retained or completely refolded in the amyloid state and the identification of possible mechanisms for macromolecular ordered aggregation represent major unresolved puzzles. To address these issues, in this article we examine the stability, dynamics, and conservation of native-like properties of several models of a previously designed amyloid-like fibril of RNase A (Sambashivan et al., Nature 2005; 437:266-269). Through the use of molecular dynamics (MD) simulations, we have provided molecular-level insights into the role of different parts of the sequence on the stability of fibrils, the collective properties of supramolecular complexes, and the presence of native-like conformations and dynamics in supramolecular aggregates. We have been able to show that within the fibrils the three-dimensional globular domain-swapped units preserve the conformational, dynamical, and hydration properties typical of the monomeric state, providing a rationalization for the experimentally observed catalytic activity of fibrils. The nativeness of the globular domains is not affected by the amyloidogenic stretches, which determine the molecular recognition process underlying aggregation through the formation of a stable steric zipper motif. Moreover, through the study of the hydration features of a single sheet model, we have been able to show that polyglutamine stretches of the domain-swapped ribonuclease tend to minimize the interaction with water in favor of sidechain-sidechain interactions, shedding light on the factors leading to the supramolecular assembly of beta-sheet layers into dry steric zippers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app