Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Estrogen-mediated activation of non-genomic pathway improves macrophages cytokine production following trauma-hemorrhage.

Although 17beta-estradiol (E2) attenuates the alterations in Kupffer cells and splenic macrophages (MPhi) cytokine production following trauma-hemorrhage, the mechanism by which this occurs remains unknown. Utilizing a cell-impermeable E2 conjugated with BSA (E2-BSA), we examined the non-genomic effects of E2 on the above two cell population cytokine production, MAPK and transcription factors activation following trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean BP 40 mmHg for 90 min, then resuscitation). E2, E2-BSA (1 mg/kg E2) with or without an estrogen receptor antagonist (ICI 182,780), or vehicle was administrated during resuscitation. Two hrs thereafter, Kupffer cells and SMPhi production of IL-6, TNF-alpha, and IL-10, activation of MAPK (p38, ERK-1/2, and JNK), and transcription factors (NF-kappaB and AP-1) were determined. IL-6, TNF-alpha, and IL-10 productive capacity, MAPK, and transcription factors activation increased in Kupffer cells while they decreased in SMPhi following trauma-hemorrhage. However, E2 administration normalized all of these alterations. Although E2-BSA also attenuated the alterations in cytokine production/transcription factors, the values were higher in Kupffer cells and lower in SMPhi compared to shams. In contrast, E2-BSA prevented trauma-hemorrhage-mediated changes in MAPK activation to the same extent as E2. Co-administration of ICI 182,780 abolished E2-BSA effects. Although some MAPK inhibitors suppressed cytokine production, the inhibitor effectiveness was dependent on cytokine, cell type and animal condition (trauma-hemorrhage or sham). Thus, E2 effects on Kupffer cells and SMPhi cytokine production and transcription factors activation following trauma-hemorrhage are mediated at least in part via non-genomic pathway and these non-genomic effects are likely mediated via MAPK pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app