JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Molecular mechanisms of spinal muscular atrophy.

Significant strides have been made during the past decade in the understanding of the molecular mechanisms that lead to the autosomal recessive motor neuron disease spinal muscular atrophy. Genetic studies revealed that spinal muscular atrophy is caused by mutation of the telomeric copy of the survival motor neuron gene ( SMN1), with all patients retaining at least one copy of the centromeric form of the gene, SMN2. SMN2 produces reduced amounts of full-length SMN messenger ribonucleic acid because of alterative splicing of SMN2 -derived transcripts, a process that is governed by specific cisand trans-acting factors. The resulting insufficient expression level of full-length SMN protein likely causes the disease manifestations of spinal muscular atrophy; however, the mechanism for the selective vulnerability of the motor unit to deficiency of this ubiquitously expressed protein remains unknown. It also remains unclear specifically when and where in the motor unit SMN is required. Despite the remaining questions, progress has been made in developing therapeutic strategies targeted to specific points along the pathogenetic pathway of spinal muscular atrophy. Histone deacetylase inhibitors will be discussed as an example.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app