Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cryopreservation and xenotransplantation of human ovarian tissue: an ultrastructural study.

OBJECTIVE: To analyze the ultrastructure of human ovarian follicles after cryopreservation and short-term xenografting.

DESIGN: Prospective experimental study.

SETTING: Academic gynecology and anatomy research units.

PATIENT(S): Ovarian cortical biopsy specimens were obtained from 13 patients.

INTERVENTION(S): Each ovarian biopsy specimen was dissected into pieces of 1 mm(3) and divided into three groups: [1] fresh tissue, [2] frozen-thawed tissue, and [3] frozen-thawed tissue xenografted onto the peritoneum of nude mice for 3 weeks.

MAIN OUTCOME MEASURE(S): Follicular ultrastructure was assessed by light and transmission electron microscopy in [1] fresh, [2] frozen, and [3] frozen-grafted tissue.

RESULT(S): Thirty-five ovarian follicles were analyzed by light and transmission electron microscopy. Twenty-five primordial and primary ovarian follicles were found. Most of them exhibited ultrastructurally well preserved features (fresh [N = 8/10], frozen [N = 7/10], and frozen-grafted [N = 4/5] tissue). Ten secondary follicles were present in xenografts. By transmission electron microscopy, all the healthy-looking secondary follicles (70%) were shown to contain intact oocytes, with features typical of earlier developmental stages, surrounded by several layers of follicular cells.

CONCLUSION(S): The present study demonstrates, for the first time, that cryopreservation and xenotransplantation do not appear to greatly affect human primordial/primary follicle ultrastructure. Interestingly, in frozen-thawed xenografts, secondary human ovarian follicles presented a well preserved ultrastructure, but asynchrony between oocyte and granulosa cell development was detected. The possible causes for this asynchrony are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app