Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Changes in somatosensory-evoked potentials and high-frequency oscillations after paired-associative stimulation.

Paired-associative stimulation (PAS), combining electrical median nerve stimulation with transcranial magnetic stimulation (TMS) with a variable delay, causes long-term potentiation or depression (LTP/LTD)-like cortical plasticity. In the present study, we examined how PAS over the motor cortex affected a distant site, the somatosensory cortex. Furthermore, the influences of PAS on high-frequency oscillations (HFOs) were investigated to clarify the origin of HFOs. Interstimulus intervals between median nerve stimulation and TMS were 25 ms (PAS(25)) and 10 ms (PAS(10)). PAS was performed over the motor and somatosensory cortices. SEPs following median nerve stimulation were recorded before and after PAS. HFOs were isolated by 400-800 Hz band-pass filtering. PAS(25) over the motor cortex increased the N20-P25 and P25-N33 amplitudes and the HFOs significantly. The enhancement of the P25-N33 amplitude and the late HFOs lasted more than 60 min. After PAS(10) over the motor cortex, the N20-P25 and P25-N33 amplitudes decreased for 40 min, and the HFOs decreased for 60 min. Frontal SEPs were not affected after PAS over the motor cortex. PAS(25/10) over the somatosensory cortex did not affect SEPs and HFOs. PAS(25/10) over the motor cortex caused the LTP/LTD-like phenomena in a distant site, the somatosensory cortex. The PAS paradigms over the motor cortex can modify both the neural generators of SEPs and HFOs. HFOs may reflect the activation of GABAergic inhibitory interneurons regulating pyramidal neurons in the somatosensory cortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app