JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Eicosapentaenoic acid is anti-inflammatory in preventing choroidal neovascularization in mice.

PURPOSE: To investigate the role of eicosapentaenoic acid (EPA), the major omega-3 polyunsaturated fatty acid (PUFA), in the development of choroidal neovascularization (CNV), together with underlying molecular mechanisms.

METHODS: Six-week-old C57BL/6 mice were fed with laboratory chow with 5% EPA or the omega-6 PUFA linoleic acid (LA) for 4 weeks. Laser photocoagulation was performed to induce CNV, and the volume of CNV tissue was evaluated by volumetric measurements. The expression and production of intercellular adhesion molecule (ICAM)-1, monocyte chemotactic protein (MCP)-1, vascular endothelial growth factor (VEGF) and interleukin (IL)-6 in the retinal pigment epithelium (RPE)-choroid in vivo, and stimulated b-End3 endothelial cells and RAW264.7 macrophages in vitro were evaluated by RT-PCR and ELISA. Fatty acid composition in the serum and the RPE-choroid was analyzed by gas chromatography and high-performance liquid chromatography, respectively. Serum levels of C-reactive protein (CRP), IL-6, VEGF, MCP-1, and soluble ICAM-1 were examined by ELISA.

RESULTS: The CNV volume in EPA-fed animals was significantly suppressed compared with that in control mice, whereas the LA-rich diet did not affect CNV. The mRNA expression and protein levels of ICAM-1, MCP-1, VEGF, and IL-6 after CNV induction were significantly reduced in EPA-supplemented mice. In vitro, EPA application led to significant inhibition of mRNA and protein levels of ICAM-1 and MCP-1 in endothelial cells and VEGF and IL-6 in macrophages. EPA-fed mice exhibited significantly higher levels of EPA and lower levels of the omega-6 PUFA arachidonic acid in the serum and the RPE-choroid than control animals. EPA supplementation also led to significant reduction of serum levels of IL-6 and CRP after CNV induction.

CONCLUSIONS: The present study demonstrates for the first time that an EPA-rich diet results in significant suppression of CNV and CNV-related inflammatory molecules in vivo and in vitro. These results suggest that frequent consumption of omega-3 PUFAs may prevent CNV and lower the risk of blindness due to age-related macular degeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app