JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The electronic structure of the H-cluster in the [FeFe]-hydrogenase from Desulfovibrio desulfuricans: a Q-band 57Fe-ENDOR and HYSCORE study.

The active site of the (57)Fe-enriched [FeFe]-hydrogenase (i.e., the "H-cluster") from Desulfovibrio desulfuricans has been examined using advanced pulse EPR methods at X- and Q-band frequencies. For both the active oxidized state (H(ox)) and the CO inhibited form (H(ox)-CO) all six (57)Fe hyperfine couplings were detected. The analysis shows that the apparent spin density extends over the whole H-cluster. The investigations revealed different hyperfine couplings of all six (57)Fe nuclei in the H-cluster of the H(ox)-CO state. Four large 57Fe hyperfine couplings in the range 20-40 MHz were found (using pulse ENDOR and TRIPLE methods) and were assigned to the [4Fe-4S](H) (cubane) subcluster. Two weak (57)Fe hyperfine couplings below 5 MHz were identified using Q-band HYSCORE spectroscopy and were assigned to the [2Fe](H) subcluster. For the H(ox) state only two different 57Fe hyperfine couplings in the range 10-13 MHz were detected using pulse ENDOR. An (57)Fe line broadening analysis of the X-band CW EPR spectrum indicated, however, that all six (57)Fe nuclei in the H-cluster are contributing to the hyperfine pattern. It is concluded that in both states the binuclear subcluster [2Fe](H) assumes a [Fe(I)Fe(II)] redox configuration where the paramagnetic Fe(I) atom is attached to the [4Fe-4S](H) subcluster. The (57)Fe hyperfine interactions of the formally diamagnetic [4Fe-4S](H) are due to an exchange interaction between the two subclusters as has been discussed earlier by Popescu and Münck [Popescu, C.V.; Münck, E., J. Am. Chem. Soc. 1999, 121, 7877-7884]. This exchange coupling is strongly enhanced by binding of the extrinsic CO ligand. Binding of the dihydrogen substrate may induce a similar effect, and it is therefore proposed that the observed modulation of the electronic structure by the changing ligand surrounding plays an important role in the catalytic mechanism of [FeFe]-hydrogenase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app