Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nociceptors of dorsal root ganglion express proton-sensing G-protein-coupled receptors.

One major goal in pain research is to identify novel pain targets. Tissue injury, inflammation, and ischemia are usually accompanied by local tissue acidosis, the degree of associated pain or discomfort well correlated with the magnitude of acidification. Proton-sensing ion channels, transient receptor potential/vanilloid receptor subtype 1, and acid-sensing ion channel 3 are involved in acidosis-linked pain. However, whether recently identified proton-sensing G-protein-coupled receptors (GPCRs) also have some contributions is unclear. Proton-sensing GPCRs, including OGR1, GPR4, G2A, and TDAG8, are fully activated at pH 6.4-6.8 in vitro. To understand whether the proton-sensing GPCRs are expressed in nociceptors, we cloned the four mouse genes and examined their tissue distribution and localization in pain-relevant loci, the dorsal root ganglion (DRG). The OGR1 family members were widely expressed in neuronal and non-neuronal tissues. Their transcripts were expressed in the DRG, and most (75-82%) were present in small-diameter neurons responsible for nociception. Approximately 31-40% of total DRG neurons expressed at least two proton-sensing GPCRs. We have also demonstrated that gene expression of proton-sensing GPCRs is changed in ASIC3 knockout mice. Our finding suggests that proton-sensing GPCRs could have some roles in nociception or in compensation of loss of ASIC3 gene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app