COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Mitochondrial dysfunction precedes neurodegeneration in mahogunin (Mgrn1) mutant mice.

Neurobiology of Aging 2007 December
Oxidative stress, ubiquitination defects and mitochondrial dysfunction are commonly associated with neurodegeneration. Mice lacking mahogunin ring finger-1 (MGRN1) or attractin (ATRN) develop age-dependent spongiform neurodegeneration through an unknown mechanism. It has been suggested that they act in a common pathway. As MGRN1 is an E3 ubiquitin ligase, proteomic analysis of Mgrn1 mutant and control brains was performed to explore the hypothesis that loss of MGRN1 causes neurodegeneration via accumulation of its substrates. Many mitochondrial proteins were reduced in Mgrn1 mutants. Subsequent assays confirmed significantly reduced mitochondrial complex IV expression and activity as well as increased oxidative stress in mutant brains. Mitochondrial dysfunction was obvious many months before onset of vacuolation, implicating this as a causative factor. Compatible with the hypothesis that ATRN and MGRN1 act in the same pathway, mitochondrial dysfunction and increased oxidative stress were also observed in the brains of Atrn mutants. Our results suggest that the study of Mgrn1 and Atrn mutant mice will provide insight into a causative molecular mechanism common to many neurodegenerative disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app