Add like
Add dislike
Add to saved papers

Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops.

Among greenhouse gases, carbon dioxide (CO(2)) is one of the most significant contributors to regional and global warming as well as climatic change. A field study was conducted to (i) determine the effect of soil characteristics resulting from changes in soil management practices on CO(2) flux from the soil surface to the atmosphere in transitional land from perennial forages to annual crops, and (ii) develop empirical relationships that predict CO(2) flux from soil temperature and soil water content. The CO(2) flux, soil temperature (T(s)), volumetric soil water content (theta(v)) were measured every 1-2 weeks in no-till (NT) and conventional till (CT) malt barley and undisturbed soil grass-alfalfa (UGA) systems in a Lihen sandy loam soil (sandy, mixed, frigid Entic Haplustoll) under irrigated and non-irrigated conditions in western North Dakota. Soil air-filled porosity (epsilon) was calculated from total soil porosity and theta(v) measurements. Significant differences in CO(2) fluxes between land management practices (irrigation and tillage) were observed on some measurement dates. Higher CO(2) fluxes were detected in CT plots than in NT and UGA treatments immediately after rainfall or irrigation. Soil CO(2) fluxes increased with increasing soil moisture (R(2)=0.15, P<0.01) while an exponential relationship was found between CO(2) emission and T(s) (R(2)=0.59). Using a stepwise regression analysis procedure, a significant multiple regression equation was developed between CO(2) flux and theta(v), T(s) (CO(2) flux = e(-3.477+0.123T(s)+6.381theta)(v); R(2)=0.68, P

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app