Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biodegradation of ethametsulfuron-methyl by Pseudomonas sp. SW4 isolated from contaminated soil.

Current Microbiology 2007 November
A soil bacterium SW4, capable of degrading the sulfonylurea herbicide ethametsulfuron-methyl (ESM), was isolated from the bottom soil of a herbicide factory. Based on physiological characteristics, biochemical tests and phylogenetic analysis of the 16S rRNA gene sequence, the strain was identified as a Pseudomonas sp. The total degradation of ESM in the medium containing glucose was up to 84.6% after 6 days of inoculation with SW4 strain. The inoculation of strain SW4 to soil treated with ESM resulted in a higher degradation rate than in noninoculated soil regardless of the soil sterilized or nonsterilized. Five metabolites of ESM degradation were analyzed by liquid chromatography/mass spectrometry. Based on the identified products, strain SW4 seemed to degrade ESM after two separate and different pathways: one leads to the cleavage of the sulfonylurea bridge, whereas the other to the dealkylation and opening of the triazine ring of ESM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app