Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

DNA polymerase mutations in drug-resistant herpes simplex virus mutants determine in vivo neurovirulence and drug-enzyme interactions.

Mutations in the thymidine kinase and DNA polymerase genes of herpes simplex virus (HSV) might confer resistance to antiviral drugs, particularly in immunocompromised patients who suffer from chronic and/or disseminated lesions. The patterns of cross-resistance and neurovirulence in mice of several DNA polymerase mutants selected under pressure of foscarnet (PFA) and different acyclic nucleoside phosphonates (ANPs), including (S)-3-hydroxy-2-phosphonylmethoxypropyl (HPMP) derivatives of adenine (HPMPA) and cytosine (HPMPC, cidofovir) and 2-phosphonylmethoxyethyl (PME) derivatives of adenine (PMEA) and 2,6-diaminopurine (PMEDAP), were investigated. The mutants were derived from the HSV-1 strain KOS following either single or multiple steps of selection with PFA (V714M, A719V, 5724N and T821M), PMEA (S724N, L802F and R959H), PMEDAP (Q618H, S724N, S724N+D1070N), HPMPC (V573M, R700M and K960R) or HPMPA (W998L, L1007M and 11028T). These amino acid substitutions were located in different subdomains of the HSV-1 DNA polymerase, either in conserved or non-conserved regions. The sensitivity of the mutants to a new class of ANPs, the 6-(2-[phosphonomethoxy]alkoxy)pyrimidines HPMPO-DAPy and PMEO-DAPy, was investigated. Cross-resistance between the HPMP derivatives and HPMPO-DAPy, on the one hand, and between the PME derivatives and PMEO-DAPy, on the other hand, was observed. Different degrees of cross-resistance between PME derivatives, PMEO-DAPy, PFA and acyclovir were noticed. The mutants ranged from exhibiting near wild-type neurovirulence (V714M, A719V, 5724N and L1007M) to significant attenuation (Q618H, S724N+D1070N, L802F, R700M, K960R, W998L and 11028T) or higher levels of attenuation (V573M). It appears that drug-resistant mutants arising under the pressure of HPMP derivatives have the lowest levels of neurovirulence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app