Comparative Study
In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential modulation of bovine epididymal activity by oxytocin and noradrenaline.

Reproduction 2007 September
Passage of spermatozoa through the epididymis and emission of sperm during ejaculation are based on spontaneous and induced contractions of epididymal peritubular muscle layers. This study deals with the ejaculation-relevant factors noradrenaline (NA) and oxytocin (OT) and their contractile effects in the course of the bovine epididymal duct. Muscle tension recording revealed excitatory effects of NA in all duct regions. A peculiarity was found in a duct section between the mid-cauda and ductus deferens, where the responsiveness to NA was particularly faint in comparison with the adjacent regions. NA-induced contraction was primarily mediated by postjunctional alpha(2)-adrenoceptors (ADRA) in the caput and corpus regions, and by alpha(1)-ADRA in the cauda region. Contrary to NA, OT exerted regionally varying effects. The peptide induced contraction in intact and epithelium-denuded caput as well as in epithelium-denuded corpus segments but had a relaxant net effect in intact corpus and proximal cauda segments. Within the mid-cauda, OT evoked strong contraction, which progressively decreased distally. Receptor specificity of the epididymal OT effects was verified using the selective OT receptor (OTR) agonist [Thr(4),Gly(7)]OT and vasopressin. OTR immunoreactivity was detected in the epididymal peritubular muscle wall and epithelial principal cells. RT-PCR analysis confirmed the presence of OTR in all duct regions. In summary, different contractile responses to OT and NA occur in the course of the epididymal duct, possibly preventing excessive sperm transport through the corpus and serving orthograde emission of sperm during ejaculation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app