Add like
Add dislike
Add to saved papers

Identification and quantification of metabolites common to 17alpha-methyltestosterone and mestanolone in horse urine.

Anabolic steroids with the 17alpha-methyl,17beta-hydroxyl group, which were developed as oral formulations for therapeutic purposes, have been abused in the field of human sports. These anabolic steroids are also used to enhance racing performance in racehorses. In humans, structurally related 17alpha-methyltestosterone (MTS) and mestanolone (MSL), which are anabolic steroids with the 17alpha-methyl,17beta-hydroxyl group, have metabolites in common. The purpose of this study was to determine metabolites common to these two steroids in horses, which may serve as readily available screening targets for the doping test of these steroids in racehorses. Urine sample collected after administering MTS and MSL to horses was treated to obtain unconjugated steroid, glucuronide, and sulfate fractions. The fractions were subjected to gas chromatography/mass spectrometry (GC/MS), and 17alpha-methyl-5alpha-androstan-3beta,17beta-diol, 17alpha-hydroxymethyl-5alpha-androstan-3beta,17beta-diol, 17alpha-methyl-5alpha-androstan-3beta,16beta,17beta-triol, and 17alpha-methyl-5alpha-androstan-3beta,16alpha,17beta-triol were detected as the common metabolites by comparison with synthesized reference standards. The urinary concentrations of these metabolites after dosing were determined by GC/MS. 17Alpha-methyl-5alpha-androstan-3beta,16beta,17beta-triol was mainly detected in the sulfate fractions of urine samples after administration. This compound was consistently detected for the longest time in the urine samples after dosing with both steroids. The results suggest that 17alpha-methyl-5alpha-androstan-3beta,16beta,17beta-triol is a very useful screening target for the doping test of MTS and MSL in racehorses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app