Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Nicotine induces hypoxia-inducible factor-1alpha expression in human lung cancer cells via nicotinic acetylcholine receptor-mediated signaling pathways.

PURPOSE: Nicotine, the major component in cigarette smoke, can promote tumor growth and angiogenesis in various cancers, including lung cancer. Hypoxia-inducible factor-1alpha (HIF-1alpha) is overexpressed in human lung cancers, particularly in non-small cell lung cancers (NSCLC), and is closely associated with an advanced tumor grade, increased angiogenesis, and resistance to chemotherapy and radiotherapy. The purpose of this study was to investigate the effects of nicotine on the expression of HIF-1alpha and its downstream target gene, vascular endothelial growth factor (VEGF), in human lung cancer cells.

EXPERIMENTAL DESIGN: Human NSCLC cell lines A549 and H157 were treated with nicotine and examined for expression of HIF-1alpha and VEGF using Western blot or ELISA. Loss of HIF-1alpha function using specific small interfering RNA was used to determine whether HIF-1alpha is directly involved in nicotine-induced tumor angiogenic activities, including VEGF expression, cancer cell migration, and invasion.

RESULTS: Nicotine increased HIF-1alpha and VEGF expression in NSCLC cells. Pharmacologically blocking nicotinic acetylcholine receptor-mediated signaling cascades, including the Ca2+/calmodulin, c-Src, protein kinase C, phosphatidylinositol 3-kinase, mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2, and the mammalian target of rapamycin pathways, significantly attenuated nicotine-induced up-regulation of HIF-1alpha protein. Functionally, nicotine potently stimulated in vitro tumor angiogenesis by promoting tumor cell migration and invasion. These proangiogenic and invasive effects were partially abrogated by treatment with small interfering RNA specific for HIF-1alpha.

CONCLUSION: These findings identify novel mechanisms by which nicotine promotes tumor angiogenesis and metastasis and provide further evidences that HIF-1alpha is a potential anticancer target in nicotine-associated lung cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app