EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Acute systemic, splanchnic and renal haemodynamic changes induced by molecular adsorbent recirculating system (MARS) treatment in patients with end-stage cirrhosis.

AIM: To evaluate the acute effect of treatment with the molecular adsorbent recirculating system (MARS) on splanchnic, renal and systemic haemodynamics in patients with end-stage cirrhosis.

METHODS: Twelve patients with end-stage cirrhosis, undergoing MARS treatment, were enrolled. The following haemodynamic parameters were measured by means of Doppler ultrasonography and thoracic electrical bioimpedance, before and after each session: portal velocity, renal and splenic resistance indices, cardiac output, cardiac stroke volume, heart rate, mean arterial pressure, systemic vascular resistance.

RESULTS: Median portal velocity increased significantly after treatment (23.7 vs. 20.3 cm/s, P < 0.05) while renal resistance index (0.72 vs. 0.75, P < 0.05) and splenic resistance index (0.60 vs. 0.65, P < 0.05) decreased significantly. Mean arterial pressure (83 vs. 81 mmHg, P < 0.05) and vascular resistance (899 vs. 749 dyne. s/cm5, P < 0.05) increased significantly, while cardiac output and stroke volume showed no significant changes.

CONCLUSIONS: Data emerging from this investigation suggest that MARS treatment improves significantly various haemodynamic alterations in cirrhotic patients in the short term. The observed decrease in renal vascular resistance and improvement in splenic resistance index, a parameter related to portal resistance, which leads us to hypothesize that these haemodynamic effects are probably mediated by clearance of vasoactive substances during MARS treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app