JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Exogenous nitric oxide triggers classic ischemic preconditioning by preventing intracellular Ca2+ overload in cardiomyocytes.

Cell Calcium 2008 April
The involvement of nitric oxide (NO) in the late phase of ischemic preconditioning is well established. However, the role of NO as a trigger or mediator of "classic preconditioning" remains to be determined. The present study was designed to investigate the effects of NO on calcium homeostasis in cultured newborn rat cardiomyocytes in normoxia and hypoxia. We found that treatment with the NO donor, sodium nitroprusside (SNP) induced a sustained elevation of intracellular calcium level ([Ca(2+)](i)) followed by a decrease to control levels. Elevation of extracellular calcium, which generally occurs during ischemia, caused an immediate increase in [Ca(2+)](i) and arrhythmia in cultures of newborn cardiomyocytes. Treatment with SNP decreased [Ca(2+)](i) to control levels and re-established synchronized beating of cardiomyocytes. A decrease in extracellular [Na(+)], which inhibits the Na(+)/Ca(2+) exchanger, did not prevent [Ca(2+)](i) reduction by SNP. In contrast, application of thapsigargin, an inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a), increased [Ca(2+)](i), and in its presence, SNP did not reduce [Ca(2+)](i), indicating that Ca(2+) reduction is achieved via activation of SERCA2a. The results obtained suggest that activation of SERCA2a by SNP increases Ca(2+) uptake into the sarcoplasmic reticulum (SR) and prevents cytosolic Ca(2+) overload, which might explain the protective effect of SNP from hypoxic damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app