JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of ischemia-reperfusion injury on renal ammonia metabolism and the collecting duct.

Acute renal injury induces metabolic acidosis, but its specific effects on the collecting duct, the primary site for urinary ammonia secretion, the primary component of net acid excretion, are incompletely understood. We induced ischemia-reperfusion (I/R) acute renal injury in Sprague-Dawley rats by clamping the renal pedicles bilaterally for 30 min followed by reperfusion for 6 h. Control rats underwent sham surgery without renal pedicle clamping. I/R injury decreased urinary ammonia excretion significantly but did not persistently alter urine volume, Na(+), K(+), or bicarbonate excretion. Histological examination demonstrated cellular damage in the outer and inner medullary collecting duct, as well as in the proximal tubule and the thick ascending limb of the loop of Henle. A subset of collecting duct cells were damaged and/or detached from the basement membrane; these cells were present predominantly in the outer medulla and were less frequent in the inner medulla. Immunohistochemistry identified that the damaged/detached cells were A-type intercalated cells, not principal cells. Both TdT-mediated dUTP nick-end labeling (TUNEL) staining and transmission electron microscopic examination demonstrated apoptosis but not necrosis. However, immunoreactivity for caspase-3 was observed in the proximal tubule, but not in collecting duct intercalated cells, suggesting that mechanism(s) of collecting duct intercalated cell apoptosis differ from those operative in the proximal tubule. We conclude that I/R injury decreases renal ammonia excretion and is associated with intercalated cell-specific detachment and apoptosis in the outer and inner medullary collecting duct. These effects likely contribute to the metabolic acidosis frequently observed in acute renal injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app