RESEARCH SUPPORT, NON-U.S. GOV'T
Haloalkylamine-induced renal papillary necrosis: a histopathological study of structure-activity relationships.
International Journal of Experimental Pathology 1991 December
The haloalkylamine 2-bromoethanamine (BEA) causes necrosis of renal papillae of rats within 24 h of a single intraperitoneal dose greater than or equal to 100 mg/kg. Nine structural analogues of BEA, differing by halide substitution, alkyl chain elongation or amine substitution, were tested for their ability to induce renal papillary lesions in rats. Three compounds (2-chloroethanamine, 3-bromopropanamine and 2-chloro-N,N-dimethylethanamine) induced lesions which were morphologically indistinguishable from those of BEA. All the molecular structural variations investigated reduced papillotoxicity compared with BEA, the parent compound. A variety of non-renal lesions including hepatic, adrenal, testicular and lymphoid necroses were also encountered. The most toxic compound was 2-fluorethanamine, a 5 mg/kg dose of which was lethal and induced renal corticomedullary mineralization and centrilobular hepatic necrosis. One analogue, 3-bromo-2-hydroxypropanamine, caused rapid and extensive necrosis of the adrenal pars fasciculata and reticularis, simulating human Waterhouse Friderichsen syndrome. The three newly identified renal papillotoxins are all theoretically capable of generating direct-acting alkylating species in solution and their activity as direct-acting mutagens in the Ames bacterial mutagenicity test with TA100 (indicating base pair substitution) closely correlated with their potency as papillotoxins. We therefore hypothesize that non-enzymically formed direct-acting alkylating species mediate these papillary lesions, and that the target selectivity of haloalkylamine toxicity most probably results from the accumulation of these alkylating species in papillary tissue.
Full text links
Trending Papers
Management of Latent Tuberculosis Infection.JAMA 2023 January 20
The Difficult Airway Redefined.Prehospital and Disaster Medicine 2022 November 10
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app