Effects of creatine supplementation and three days of resistance training on muscle strength, power output, and neuromuscular function

Joel T Cramer, Jeffrey R Stout, Julie Y Culbertson, Alison D Egan
Journal of Strength and Conditioning Research 2007, 21 (3): 668-77
Previous studies have demonstrated increases in peak torque (PT) and decreases in acceleration time (ACC) after only 2 days of resistance training, and other studies have reported improvements in isokinetic performance after 5 days of creatine supplementation. Consequently, there may be a combined benefit of creatine supplementation and short-term resistance training for eliciting rapid increases in muscle strength, which may be important for short-term rehabilitation and return-to-play for previously injured athletes. The purpose of this study, therefore, was to examine the effects of 3 days of isokinetic resistance training combined with 8 days of creatine monohydrate supplementation on PT, mean power output (MP), ACC, surface electromyography (EMG), and mechanomyography (MMG) of the vastus lateralis muscle during maximal concentric isokinetic leg extension muscle actions. Twenty-five men (mean age +/- SD = 21 +/- 3 years, stature = 177 +/- 6 cm, and body mass = 80 +/- 12 kg) volunteered to participate in this 9-day, double-blind, placebo-controlled study and were randomly assigned to either the creatine (CRE; n = 13) or placebo (PLA; n = 12) group. The CRE group ingested the treatment drink (280 kcal; 68 g carbohydrate; 10.5 g creatine), whereas the PLA group received an isocaloric placebo (70 g carbohydrate). Two servings per day (morning and afternoon) were administered in the laboratory on days 1-6, with only 1 serving on days 7-8. Before (pre; day 1) and after (post; day 9) the resistance training, maximal voluntary concentric isokinetic leg extensions at 30, 150, and 270 degrees x s(-1) were performed on a calibrated Biodex System 3 dynamometer. Three sets of 10 repetitions at 150 degrees x s(-1) were performed on days 3, 5, and 7. Peak torque increased (p = 0.005; eta(2) = 0.296), whereas ACC decreased (p < 0.001; eta(2) = 0.620), from pretraining to posttraining for both the CRE and PLA groups at each velocity (30, 150, and 270 degrees x s(-1)). Peak torque increased by 13% and 6%, whereas ACC decreased by 42% and 34% for the CRE and PLA groups, respectively, but these differences were not statistically significant (p > 0.05). There were no changes in MP, EMG, or MMG amplitude; however, EMG median frequency (MDF) increased, and MMG MDF increased at 30 degrees x s(-1), from pretraining to posttraining for both the CRE and PLA groups. These results indicated that 3 days of isokinetic resistance training was sufficient to elicit small, but significant, improvements in peak strength (PT) and ACC for both the CRE and PLA groups. Although the greater relative improvements in PT and ACC for the CRE group were not statistically significant, these findings may be useful for rehabilitation or strength and conditioning professionals who may need to rapidly increase the strength of a patient or athlete within 9 days.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"