JOURNAL ARTICLE

Diannexin, a novel annexin V homodimer, provides prolonged protection against hepatic ischemia-reperfusion injury in mice

Narci C Teoh, Yoshiya Ito, Jacqueline Field, Nancy W Bethea, Deama Amr, Margaret K McCuskey, Robert S McCuskey, Geoffrey C Farrell, Anthony C Allison
Gastroenterology 2007, 133 (2): 632-46
17681182

BACKGROUND AND AIMS: Ischemia-reperfusion injury (IRI) remains an important cause of liver failure after hepatic surgery or transplantation. The mechanism seems to originate within the hepatic sinusoid, with damage to endothelial cells, an early, reproducible finding. Sinusoidal endothelial cells (SECs), damaged during reperfusion, activate and recruit inflammatory cells and platelets. We hypothesized that a recombinant human annexin V homodimer, Diannexin, would protect SECs from reperfusion injury.

METHODS: We tested this proposal in a well-characterized in vivo murine partial hepatic IRI model.

RESULTS: Whether administered 5 minutes or 24 hours before or 1 hour after ischemia-reperfusion, Diannexin (100-1000 microg/kg) almost completely protected against liver injury. The protective efficacy conferred by Diannexin was highly visible at the microcirculatory level. Thus, although IR in this model is associated with early swelling and gap formation in SECs, Diannexin ameliorated these effects as shown by >80% reduction in alanine aminotransferase values during the early phase of reperfusion injury (2 hours) and near normalization of liver necrosis and inflammation in the late phase of inflammatory recruitment (24 hours). Consistent with the proposed role of SEC injury in hepatic IRI, Diannexin also decreased hepatic expression of proinflammatory molecules (MIP-2, ICAM-1, VCAM), abolished leukocyte and platelet adherence to damaged SECs, and, by in vivo microscopy, Diannexin preserved microcirculatory blood flow and hepatocyte integrity during reperfusion.

CONCLUSIONS: Diannexin is an apparently safe therapeutic protein that provides prolonged protection against hepatic IRI via cytoprotection of SECs, thereby interrupting secondary microcirculatory inflammation and coagulation.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17681182
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"