JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Differentiation of a fibrin gel encapsulated chondrogenic cell line.

Hyaline cartilage has very limited regenerative capacity following damage. Therefore engineered tissue substitutes have been the focus of much research. Our objective was to develop a fibrin-based scaffold as a cell delivery vehicle and template for hyaline cartilage regeneration, and compare its cellular properties against monolayer and pellet culture for chondrogenic cells. The chondrogenic precursor cell line, RCJ 3.1C5.18 (C5.18), was chosen as a test system for evaluating the effect of various culture conditions, including cell encapsulation, on articular chondrogenic cell differentiation. The C5.18 cells in monolayer showed elevated expression of collagen II, an articular chondrogenic marker, but also markers for fibrocartilage differentiation (collagen I and versican) when cultured with chondrogenic medium as compared to basic maintenance medium. Pellets of C5.18 cells cultured in chondrogenic medium were histologically more organized in structure than pellets cultured in control maintenance medium. The chondrogenic medium cultured pellets also secreted an extracellular matrix that was comprised of type II with very little type I collagen, indicating a trend towards a more hyaline-like cartilage. Moreover, when cultured in chondrogenic medium, fibrin-encapsulated C5.18 cells elaborated an extracellular matrix containing type II collagen, as well as aggrecan, which are both components of hyaline cartilage. This indicated a more articular-like chondrogenic differentiation for fibrin encapsulated C5.18 cells. The results of these experiments provide evidence that the C5.18 cell line can be used as a tool to evaluate potential scaffolds for articular cartilage tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app