Add like
Add dislike
Add to saved papers

Cannabinoid agonists differentially substitute for the discriminative stimulus effects of Delta(9)-tetrahydrocannabinol in C57BL/6J mice.

RATIONALE: A variety of behavioral procedures have been developed to assess cannabinoid activity in mice; however, the feasibility of establishing Delta(9)-THC as a discriminative stimulus in mice has not been documented.

OBJECTIVE: One goal was to establish Delta(9)-THC as a discriminative stimulus in mice; after having done so, another goal was to examine the in vivo mechanism of action of Delta(9)-THC with other cannabinoids and noncannabinoids.

MATERIALS AND METHODS: C57BL/6J mice (n = 8) were trained to discriminate Delta(9)-THC (10 mg/kg i.p.) from vehicle while responding under a fixed ratio 30 schedule of food presentation.

RESULTS: Mice satisfied the discrimination criteria in 18-98 (median = 67) sessions and the discriminative stimulus effects of Delta(9)-THC were dose-dependent (ED(50) = 2.6 mg/kg). CP 55940 and WIN 55212-2 dose-dependently increased Delta(9)-THC-appropriate responding to 100% (ED(50) = 0.032 and 0.45 mg/kg, respectively), whereas methanandamide and a variety of noncannabinoids (cocaine, ethanol, and ketamine) produced a maximum of 34% Delta(9)-THC-appropriate responding. The cannabinoid CB(1) antagonist SR 141716A (rimonabant) surmountably antagonized the discriminative effects of Delta(9)-THC, CP 55940, and WIN 55212-2; methanandamide did not significantly modify the Delta(9)-THC discriminative stimulus.

CONCLUSIONS: The discriminative stimulus effects of Delta(9)-THC, CP 55940, and WIN 55212-2 are mediated by the same (i.e., CB(1)) receptors, whereas the effects of methanandamide or a metabolite of methanandamide are mediated at least in part by non-CB(1) receptors. The discriminative stimulus effects of Delta(9)-THC in mice could be used to evaluate mechanisms of cannabinoid activity with approaches (e.g., inducible knockouts) currently unavailable in nonmurine species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app