JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Preparation and characterization of novel fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots loaded solid lipid nanoparticles.

Fluorescent quantum dots (QDs, semiconductor nanocrystals) have gained increasing attention in the past decade due to their unique optical properties. In this work, we synthesized highly luminescent lipophilic CdSe/ZnS core-shell QDs under mild conditions, and encapsulated the QDs into solid lipid nanoparticles (SLNs) to prepare fluorescent nanocomposite particles. The transmission electron microscopy image showed that the QDs were nearly monodispersed and uniform with an average diameter of about 4 nm. The fluorescence spectrum of the QDs was symmetric and narrow with an emission maximum at 556 nm. Characterized by photon correlation spectroscopy (PCS) and zeta potential measurement, the nanocomposite particles (QDs-loaded SLNs) exhibit an average particle size of about 90 nm and zeta potential of about -28 mV. Fluorescence measurements showed that the encapsulated QDs maintain their high fluorescence and narrow/symmetric emission spectra. Assembling many QDs in single nanocomposite particle significantly increases the fluorescence signal and the signal-to-background ratio compared to individual QDs. In vitro and in vivo imaging indicated that QDs-loaded SLNs were stable and slow to photobleach. These fluorescent QDs-loaded SLNs were biocompatible with fluorescence stability and had good potential in biological imaging applications. The approaches could also be used to encapsulate other optical nanocrystals or magnetic nanoparticles, and allow them to be used under aqueous biological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app