JOURNAL ARTICLE

Simulation study on the disordered state of an Alzheimer's beta amyloid peptide Abeta(12 36) in water consisting of random-structural, beta-structural, and helical clusters

Jinzen Ikebe, Narutoshi Kamiya, Jun-Ichi Ito, Heisaburo Shindo, Junichi Higo
Protein Science 2007, 16 (8): 1596-608
17656579
The monomeric Alzheimer's beta amyloid peptide, Abeta, is known to adopt a disordered state in water at room temperature, and a circular dichroism (CD) spectroscopy experiment has provided the secondary-structure contents for the disordered state: 70% random, 25% beta-structural, and 5% helical. We performed an enhanced conformational sampling (multicanonical molecular dynamics simulation) of a 25-residue segment (residues 12-36) of Abeta in explicit water and obtained the conformational ensemble over a wide temperature range. The secondary-structure contents calculated from the conformational ensemble at 300 degrees K reproduced the experimental secondary-structure contents. The constructed free-energy landscape at 300 degrees K was not plain but rugged with five clearly distinguishable clusters, and each cluster had its own characteristic tertiary structure: a helix-structural cluster, two beta-structural clusters, and two random-structural clusters. This indicates that the contribution from the five individual clusters determines the secondary-structure contents experimentally measured. The helical cluster had a similarity with a stable helical structure for monomeric Abeta in 2,2,2-trifluoroethanol (TFE)/water determined by an NMR experiment: The positions of helices in the helical cluster were the same as those in the NMR structure, and the residue-residue contact patterns were also similar with those of the NMR structure. The cluster-cluster separation in the conformational space indicates that free-energy barriers separate the clusters at 300 degrees K. The two beta-structural clusters were characterized by different strand-strand hydrogen-bond (H-bond) patterns, suggesting that the free-energy barrier between the two clusters is due to the H-bond rearrangements.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17656579
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"