COMPARATIVE STUDY
JOURNAL ARTICLE

Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data

Paul S Albert, Dean A Follmann
Statistical Methods in Medical Research 2007, 16 (5): 417-39
17656452
The analysis of longitudinal data with non-ignorable missingness remains an active area in biostatistics research. This article discusses various random effects and latent process models which have been proposed for analyzing longitudinal binary data subject to both non-ignorable intermittent missing data and dropout. These models account for non-ignorable missingness by introducing random effects or a latent process which is shared between the response model and the model for the missing-data mechanism. We discuss various random effects and latent processes approaches and compare these approaches with analyses from an opiate clinical trial data set, which had high proportion of intermittent missingness and dropout. We also compare these random effect and latent process approaches with other methods for accounting for non-ignorable missingness using this data set.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17656452
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"