JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Phospholipase Cgamma1 signalling regulates lipopolysaccharide-induced cyclooxygenase-2 expression in cardiomyocytes.

Lipopolysaccharide (LPS) induces cyclooxygenase-2 (COX-2) expression in cardiomyocytes, which plays a role in myocardial depression during endotoxemia. The purpose of this study was to investigate the role of phosphatidylinositol (PI)-phospholipase Cgamma1 (PLCgamma1) in cardiac COX-2 expression in vitro and in vivo. In cultured mouse neonatal cardiomyocytes, LPS increased PLCgamma1 phosphorylation and COX-2 expression. Knockdown of PLCgamma1 with specific siRNA or inhibition of PI-PLC with U73122 attenuated COX-2 mRNA and protein expression induced by LPS (1 microg/ml). PLCgamma1 activation by LPS also increased ERK1/2 MAPK phosphorylation, and inhibition of ERK1/2 MAPK blocked the effect of PLCgamma1 on COX-2 expression. Furthermore, activation of PLCgamma1 is a consequence of the Src family activation since inhibition of Src abrogated whereas over-expression of Src enhanced PLCgamma1 phosphorylation and COX-2 expression in LPS-stimulated cardiomyocytes. To investigate the role of PLCgamma1 in endotoxemia, wild-type and PLCgamma1(+/-) adult mice were pre-treated with U73122, or its inactive analog, U73343 (9 mg/kg, i.p.), or vehicle for 15 min followed by LPS (4 mg/kg, i.p.) for 4 h. U73122 or heterozygous deletion of PLCgamma1 decreased cardiac COX-2 expression. The phosphorylation of ERK1/2 MAPK induced by LPS was also attenuated in U73122- or PLCgamma1(+/-) compared to U73343-treated or wild-type littermate hearts, respectively. In conclusion, our study suggests that PLCgamma1 signalling represents a novel pathway regulating cardiac COX-2 expression during LPS stimulation. The Src family is responsible for PLCgamma1 activation, which signals the ERK1/2 MAPK pathway, resulting in COX-2 production in LPS-stimulated cardiomyocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app