Add like
Add dislike
Add to saved papers

Elastic properties of carbon nanotubes: an atomistic approach.

Energetically the single sheet of graphite (graphene) is more stable than the nanotube. The energy difference between the two systems can be directly related to the strain energy involved in rolling up the graphene sheet to form the nanotube. We have carried out first-principle electronic structure calculations and evaluated the strain energy as a function of the nanotube radius. The dependence of the strain energy on the diameter of the nanotube has been found by several groups to be well-described by a continuum elasticity model. We attempt to examine why this is the case and show where atomistics enter the description.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app