Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Secretion of atherogenic risk factor apolipoprotein B-100 is increased by a potential mechanism of JNK/PKC-mediated insulin resistance in liver cells.

Apolipoprotein B-100 (ApoB) is the main protein of the atherogenic lipoproteins and plasma ApoB levels reflect the total numbers of atherogenic lipoproteins. Induction of insulin resistance was accompanied by a considerable rise in the production of hepatic very low density lipoprotein (VLDL) containing ApoB and triglyceride. Increased plasma levels of ApoB and triglyceride in VLDL are common characteristics of the dyslipidemia associated with insulin resistance and type 2 diabetes mellitus. Thus, we investigate whether phorbol 12-myristate-13-acetate (PMA)-induced insulin resistance affects the increase of ApoB secretion. PMA increased ApoB secretion and transcriptional level of microsomal triglyceride transfer protein (MTP). PMA treatment also resulted in increase of insulin receptor substrate 1 (IRS1) serine312 (Ser312) and serine1101 (Ser1101) phosphorylation and induction of IRS1 degradation. Additionally, PMA induced activation of c-jun N-terminal kinase (JNK) and protein kinase C (PKC) isoforms (alpha, betaI, delta, zeta, theta), and reduced AKT8 virus oncogene cellular homolog (AKT) activation in a time dependent manner. PMA-induced ApoB secretion, MTP promoter activities, and IRS1 degradation was significantly decreased by treatment of JNK and PKCs inhibitors. Orthovanadate, a potent tyrosine phosphatase inhibitor, increased tyrosine phosphorylation of IRS1 and decreased ApoB secretion of Chang liver cells although PMA was co-treated. From the results, it was concluded that PMA-induced insulin resistance, through induction of serine phosphorylation of IRS1 mediated by activated JNK and PKCs, increases ApoB secretion in Chang liver cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app