Add like
Add dislike
Add to saved papers

Correlation among hyperphosphatemia, type II sodium phosphate transporter activity, and vitamin D metabolism in Fgf-23 null mice.

Phosphate homeostasis is mostly regulated through humoral factors exerting direct or indirect effects on transporter proteins located in the intestine and kidney. Fibroblast growth factor 23 (FGF-23) is a major phosphate-regulating molecule, which can affect both renal and intestinal phosphate uptake to influence overall mineral ion homeostasis. We have found that Fgf-23 gene knockout mice (Fgf-23(-/-)) develop hyperphosphatemia that consequently leads to abnormal bone mineralization, and severe soft tissue calcifications. On the contrary, FGF-23 transgenic mice develop hypophosphatemia and produce rickets-like features in the mutant bone. Further studies using our Fgf-23(-/-) mice have identified an inverse correlation between Fgf-23, and vitamin D or NaPi2a; genomic elimination of either vitamin D or NaPi2a activities from Fgf-23(-/-) mice could reverse severe hyperphosphatemia to hypophosphatemia, and consequently could alter skeletal mineralization, suggesting that regulation of phosphate homeostasis in Fgf-23(-/-) mice is vitamin D- and NaPi2a-mediated process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app