Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)gamma coactivator-1 alpha and the nuclear receptor PPAR alpha control the expression of glycerol kinase and metabolism genes independently of PPAR gamma activation in human white adipocytes.

Diabetes 2007 October
OBJECTIVE: The purpose of this work was to determine the pattern of genes regulated by peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1 alpha (PGC-1 alpha) in human adipocytes and the involvement of PPARalpha and PPARgamma in PGC-1 alpha transcriptional action.

RESEARCH DESIGN AND METHODS: Primary cultures of human adipocytes were transduced with a PGC-1 alpha adenovirus and treated with PPARgamma and PPARalpha agonists. Variation in gene expression was assessed using pangenomic microarrays and quantitative RT-PCR. To investigate glycerol kinase (GyK), a target of PGC-1 alpha, we measured enzymatic activity and glycerol incorporation into triglycerides. In vivo studies were performed on wild-type and PPARalpha(-/-) mice. The GyK promoter was studied using chromatin immunoprecipitation and promoter reporter gene assays.

RESULTS: Among the large number of genes regulated by PGC-1 alpha independently of PPARgamma, new targets involved in metabolism included the gene encoding GyK. The induction of GyK by PGC-1 alpha was observed at the levels of mRNA, enzymatic activity, and glycerol incorporation into triglycerides. PPARalpha was also upregulated by PGC-1 alpha. Its activation led to an increase in GyK expression and activity. PPARalpha was shown to bind and activate the GyK promoter. Experiments in mice confirmed the role of PGC-1 alpha and PPARalpha in the regulation of GyK in vivo.

CONCLUSIONS: This work uncovers novel pathways regulated by PGC-1 alpha and reveals that PPARalpha controls gene expression in human white adipocytes. The induction of GyK by PGC-1 alpha and PPARalpha may promote a futile cycle of triglyceride hydrolysis and fatty acid reesterification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app