In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Vasoactive and permeability effects of vascular endothelial growth factor-165 in the term in vitro dually perfused human placental lobule.

Endocrinology 2007 October
Vascular endothelial growth factor (VEGF) is an important vasodilator and effector of permeability in systemic blood vessels. Molecular and tissue culture techniques have provided evidence for its placental synthesis and release. Using an in vitro dual-perfusion model of the term placental lobule from normal pregnancy, we report here the relative secretion of total VEGF, soluble VEGF receptor (VEGFR)-1, and free VEGF into the maternal and fetoplacental circulations of the placenta. We tested the hypothesis that VEGF has vasomotor and permeability effects in the fetoplacental circulation of the human placenta, and we examined the broad intracellular pathways involved in the vasodilatory effect that we found. We show that total VEGF is released into the fetal and maternal circulations in a bipolar fashion, with a bias toward maternal side output. Soluble VEGFR-1 was also secreted into both circulations with bias toward the maternal side. Consequently, free VEGF (12.8 +/- 2.4 pg/ml, mean +/- se) was found only in the fetoplacental circulation. VEGF-165 was found to be a potent vasodilator of the fetoplacental circulation (maximum response: 77% of previous steady-state fetal-side inflow hydrostatic pressure after preconstriction with U46619; EC(50) = 71 pm). This vasodilatory effect was mediated by the VEGFR-2 receptor and nitric oxide in a manner-independent of the involvement of prostacyclin and the src-family tyrosine kinases. However, nitric oxide could explain only 50% of the vasodilatory effect. Finally, we measured the permeability of the perfused placenta to inert hydrophilic tracers and found no difference in the presence and absence of VEGF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app