JOURNAL ARTICLE

Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin

Tomas G Neilan, Sarah L Blake, Fumito Ichinose, Michael J Raher, Emmanuel S Buys, Davinder S Jassal, Elissa Furutani, Teresa Miriam Perez-Sanz, Amanda Graveline, Stefan P Janssens, Michael H Picard, Marielle Scherrer-Crosbie, Kenneth D Bloch
Circulation 2007 July 31, 116 (5): 506-14
17638931

BACKGROUND: Flavoprotein reductases are involved in the generation of reactive oxygen species by doxorubicin. The objective of the present study was to determine whether or not one flavoprotein reductase, endothelial nitric oxide synthase (nitric oxide synthase 3 [NOS3]), contributes to the cardiac dysfunction and injury seen after the administration of doxorubicin.

METHODS AND RESULTS: A single dose of doxorubicin (20 mg/kg) was administered to wild-type (WT) mice, NOS3-deficient mice (NOS3-/-), and mice with cardiomyocyte-specific overexpression of NOS3 (NOS3-TG). Cardiac function was assessed after 5 days with the use of echocardiography. Doxorubicin decreased left ventricular fractional shortening from 57+/-2% to 47+/-1% (P<0.001) in WT mice. Compared with WT mice, fractional shortening was greater in NOS3-/- and less in NOS3-TG after doxorubicin (55+/-1% and 35+/-2%; P<0.001 for both). Cardiac tissue was harvested from additional mice at 24 hours after doxorubicin administration for measurement of cell death and reactive oxygen species production. Doxorubicin induced cardiac cell death and reactive oxygen species production in WT mice, effects that were attenuated in NOS3-/- and were more marked in NOS3-TG mice. Finally, WT and NOS3-/- mice were treated with a lower dose of doxorubicin (4 mg/kg) administered weekly over 5 weeks. Sixteen weeks after beginning doxorubicin treatment, fractional shortening was greater in NOS3-/- than in WT mice (45+/-2% versus 28+/-1%; P<0.001), and mortality was reduced (7% versus 60%; P<0.001).

CONCLUSIONS: These findings implicate NOS3 as a key mediator in the development of left ventricular dysfunction after administration of doxorubicin.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17638931
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"