JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Endogenous cardiac stem cells.

In the past few years it has been established that the heart contains a reservoir of stem and progenitor cells. These cells are positive for various stem/progenitor cell markers (Kit, Sca-1, Isl-1, and Side Population (SP) properties). The relationship between the various cardiac stem cells (CSC) and progenitor cells described awaits clarification. Furthermore, they may open a new therapeutic strategies of cardiac repair based on the regeneration potential of cardiac stem cells. Currently, cellular cardiomyoplasty is actively explored as means of regenerating damaged myocardium using several different cell types. CSCs seem a logical cell source to exploit for cardiac regeneration therapy. Their presence into the heart, the frequent co-expression of early cardiac progenitor transcription factors, and the capability for ex vivo and in vivo differentiation toward the cardiac lineages offer promise of enhanced cardiogenicity compared to other cell sources. CSCs, when isolated from various animal models by selection based on c-Kit, Sca-1, and/or MDR1, have shown cardiac regeneration potential in vivo following injection in the infracted myocardium. Recently, we have successfully isolated CSCs from small biopsies of human myocardium and expanded them ex vivo by many folds without losing differentiation potential into cardiomyocytes and vascular cells, bringing autologous transplantation of CSCs closer to clinical evaluation. These cells are spontaneously shed from human surgical specimens and murine heart samples in primary culture. This heterogeneous population of cells forms multi-cellular clusters, dubbed cardiospheres (CSs), in suspension culture. CSs are composed of clonally-derived cells, consist of proliferating c-Kit positive cells primarily in their core and differentiating cells expressing cardiac and endothelial cell markers on their periphery. Although the intracardiac origin of adult myocytes has been unequivocally documented, the potential of an extracardiac source of cells, able to repopulate the lost CSCs in pathological conditions (infarct) cannot be excluded and will be discussed in this review. The delivery of human CSs or of CSs-derived cells into the injured heart of the SCID mouse resulted in engraftment, migration, myocardial regeneration and improvement of left ventricular function. Our method for ex vivo expansion of resident CSCs for subsequent autologous transplantation back into the heart, may give these cell populations, the resident and the transplanted one, the combined ability to mediate myocardial regeneration to an appreciable degree, and may change the way in which cardiovascular disease will be approached in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app