COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pertuzumab, a novel HER dimerization inhibitor, inhibits the growth of human lung cancer cells mediated by the HER3 signaling pathway.

Cancer Science 2007 September
A humanized anti-HER2 monoclonal antibody pertuzumab (Omnitarg, 2C4), binding to a different HER2 epitope than trastuzumab, is known as an inhibitor of heterodimerization of the HER receptors. Potent antitumor activity against HER2-expressing breast and prostate cancer cell lines has been clarified, but this potential is not clear against lung cancers. The authors investigated the in vitro anti-tumor activity of pertuzumab against eight non-small cell lung cancer cells expressing various members of the HER receptors. A lung cancer 11_18 cell line expressed a large amount of HER2 and HER3, and its cell growth was stimulated by an HER3 ligand, heregulin (HRG)-alpha. Pertuzumab significantly inhibited the HRG-alpha-stimulated cellular growth of the 11_18 cells. Pertuzumab blocked HRG-alpha-stimulated phosphorylation of HER3, mitogen-activated protein kinase (MAPK), and Akt. In contrast, pertuzumab failed to block epidermal growth factor (EGF)-stimulated phosphorylation of EGF receptor (EGFR) and MAPK. Immunoprecipitation showed that pertuzumab inhibited HRG-alpha-stimulated HER2/HER3 heterodimer formation. HRG-alpha-stimulated HER3 phosphorylation was also observed in the PC-9 cells co-overexpressing EGFR, HER2, and HER3, but the cell growth was neither stimulated by HRG-alpha nor inhibited by pertuzumab. The present results suggest that pertuzumab is effective against HRG-alpha-dependent cell growth in lung cancer cells through inhibition of HRG-alpha-stimulated HER2/HER3 signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app