Add like
Add dislike
Add to saved papers

Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent.

A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P(T), was isolated from 'black smoker' chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2 degrees N, 33.9 degrees W). The cells of strain OGL-20P(T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within a pH range of 5.0-8.5 (optimum pH 7.0), an NaCl concentration range of 1-5 % (w/v) (optimum 3 %) and a temperature range of 55-94 degrees C (optimum 83-85 degrees C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, Fe(III) or nitrate. Proteolysis products (peptone, bacto-tryptone, Casamino acids and yeast extract) are utilized as substrates during sulfur reduction. Strain OGL-20P(T) is resistant to ampicillin, chloramphenicol, kanamycin and gentamicin, but sensitive to tetracycline and rifampicin. The G+C content of the DNA is 52.9 mol%. The 16S rRNA gene sequence analysis revealed that strain OGL-20P(T) is closely related to Thermococcus coalescens and related species, but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20P(T) represents a new separate species within the genus Thermococcus, for which we propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20P(T) (=JCM 12859(T)=DSM 14981(T)=ATCC BAA-394(T)).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app