JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance.

Trastuzumab is a recombinant antibody drug that is widely used for the treatment of breast cancer. Despite encouraging clinical results, some cancers are primarily resistant to trastuzumab, and a majority of those initially responding become resistant during prolonged treatment. The mechanisms of trastuzumab resistance have not been fully understood. We examined the role of antibody-dependent cellular cytotoxicity (ADCC) using JIMT-1 cells that are ErbB2 positive but intrinsically resistant to trastuzumab in vitro. Unexpectedly, in experiments mimicking adjuvant therapy of submacroscopic disease in vivo (JIMT-1 cells inoculated s.c. in severe combined immunodeficiency mice), trastuzumab was able to inhibit the outgrowth of macroscopically detectable xenograft tumors for up to 5-7 weeks. The effect is likely to be mediated via ADCC because trastuzumab-F(ab')(2) was ineffective in this model. Moreover, in vitro ADCC reaction of human leukocytes was equally strong against breast cancer cells intrinsically sensitive (SKBR-3) or resistant (JIMT-1) to trastuzumab or even against a subline of JIMT-1 that was established from xenograft tumors growing despite trastuzumab treatment. These results suggest that ADCC may be the predominant mechanism of trastuzumab action on submacroscopic tumor spread. Thus, measuring the ADCC activity of patient's leukocytes against the tumor cells may be a relevant predictor of clinical trastuzumab responsiveness in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app